Axiomatic analysis of aggregation methods for collective annotation
نویسندگان
چکیده
Crowdsourcing is an important tool, e.g., in computational linguistics and computer vision, to efficiently label large amounts of data using nonexpert annotators. The individual annotations collected need to be aggregated into a single collective annotation. The hope is that the quality of this collective annotation will be comparable to that of a traditionally sourced expert annotation. In practice, most scientists working with crowdsourcing methods use simple majority voting to aggregate their data, although some have also used probabilistic models and treated aggregation as a problem of maximum likelihood estimation. The observation that the aggregation step in a collective annotation exercise may be considered a problem of social choice has only been made very recently. Following up on this observation, we show that the axiomatic method, as practiced in social choice theory, can make a contribution to this important domain and we develop an axiomatic framework for collective annotation, focusing amongst other things on the notion of an annotator’s bias. We complement our theoretical study with a discussion of a crowdsourcing experiment using data from dialogue modelling in computational linguistics.
منابع مشابه
Empirical Analysis of Aggregation Methods for Collective Annotation
We investigate methods for aggregating the judgements of multiple individuals in a linguistic annotation task into a collective judgement. We define several aggregators that take the reliability of annotators into account and thus go beyond the commonly used majority vote, and we empirically analyse their performance on new datasets of crowdsourced data.
متن کاملThe Social Entropy Process: Axiomatising the Aggregation of Probabilistic Beliefs
The present work stems from a desire to combine ideas arising from two historically different schemes of probabilistic reasoning, each having its own axiomatic traditions, into a single broader axiomatic framework, capable of providing general new insights into the nature of probabilistic inference in a collective context. In the present sketch of our work we describe briefly the background con...
متن کاملLifting Rationality Assumptions in Binary Aggregation
We consider problems where several individuals each need to make a yes/no choice regarding a number of issues and these choices then need to be aggregated into a collective choice. Depending on the application at hand, different combinations of yes/no may be considered rational. We can describe such rationality assumptions in terms of a propositional formula. The question then arises whether or...
متن کاملOpinion pooling under informational asymmetries
If each member of a group assigns a certain probability to a hypothesis, what probability should the collective as a whole assign? More generally, how should individual probability functions be merged into a single collective one? I investigate this question in case that the individual probability functions are based on di¤erent information sets. I present a simple solution to this aggregation ...
متن کاملOpinion pooling under asymmetric information
If each member of a group assigns a certain probability to a hypothesis, what probability should the collective as a whole assign? More generally, how should individual probability functions be merged into a single collective one? I investigate this question in case that the individual probability functions are based on different information sets. Under suitable assumptions, I present a simple ...
متن کامل